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Abstract

This paper deals with distortion of the cross-section contour of thin-walled beams with simple multi-cell closed rec-
tangular cross-sections. The cross-section distortion is considered in the limit case. It is assumed that beam plates are
hinged together along their longitudinal edges. Double symmetric three and two-cell closed cross-sections are consid-
ered. The stresses and displacements are obtained in the closed analytical form. The additional stresses and displace-
ments due to distortion with respect to the stresses and displacements of the ordinary theory of bending are
obtained. The boundary conditions are given in the general form. Some illustrative examples are given.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The reliability of the assumption, in the theory of bending of thin-walled beams, that the shape of the
cross-section is maintained depends on the stiffness of the beam transverse framing, or the cross-section it-
self (Vlasov, 1961); in some cases, also on the load distribution in the transverse direction (Kollbrunner and
Basler, 1969).

The thin-walled beams are assembled of a number of thin plates that are restrained along their longitu-
dinal edges. The plates can be stiffened by frames, usually in the transverse direction; sometimes, also by
transverse bulkheads (‘‘diaphragms’’). Transverse framing, or the cross-section itself, cannot prevent the
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cross-section distortion entirely. In the limit, it may be assumed that plates are ‘‘hinged’’ along their lon-
gitudinal edges.

These two different types of structural behaviour (with the ‘‘rigid’’ cross-sections and hinged cross-sec-
tions) may be considered as two limiting cases of stresses and deformations of the actual structure (Kollb-
runner and Basler, 1969).

The theory that deals with such idealized beams, with hinged plates, is the folded plate theory (Schwyzer,
1920; Kollbrunner and Basler, 1969). By the theory, the longitudinal deformations and therefore the lon-
gitudinal normal stresses are equal at hinged connections. Hence, the normal stresses are linearly distrib-
uted over the cross-sections of each plate. The end cross-sections are assumed rigid. Each plate is at
most preceded and followed by one plate only; the method is no longer applicable if one hinge belongs
to three or more plates.

The problem of the cross-section distortion can be solved in an ‘‘exact’’ way, in general, by using three-
dimensional models (Hughes, 1983; Bull, 1988). However, in the case of ordinary beams, with small dimen-
sions of the cross-section contour with respect to the length of the beam, simpler analytical as well as
numerical methods may also be applied (Boitzov, 1972; Boswell and Zhang, 1984; Boswell and Li, 1995;
Hsu et al., 1995; Kim and Kim, 1999, 2000a,b, 2001; Pavazza and Matoković, 2000; Kim et al., 2002;
Pavazza, 2002).

In this paper, an analytical approach to the problem of the cross-section distortion of prismatic beams
with closed rectangular thin-walled cross-sections subjected to bending with influence of shear will be con-
sidered. The double symmetric cross-sections with three and two closed cells will be analysed. The results
will be given in the analytical closed form, suitable for parametric studies.
2. Thin-walled beams subjected to bending with influence of shear

The forces–displacements relations for a prismatic thin-walled beam subjected to bending, by ordinary
beam theories that include the shear influence (Filin, 1975), are governed by the following differential
equations
dw
dx

¼ �b; EIy
d2w
dx2

¼ �My ; EIy
d3w
dx3

¼ � dMy

dx
¼ �Qz; EIy

d4w
dx4

¼ � d2My

dx2
¼ � dQz

dx
¼ qz; ð1Þ
where w = w(x) is the displacement in the z-direction due to bending, b = b(x) is the angular displacement
with respect to the y-axis due to bending, Iy is the cross-section moment of inertia with respect to the y-axis,
My = My(x) is the bending moment with respect to the y-axis, Qz = Qz(x) is the shearing force with respect
to the z-axis, qz = qz(x) is the line load per unit length in the z-direction, Oxyz is the rectangular co-ordinate
system, where the y and z-axis coincide with the principal axes, where the z-axis is the axis of symmetry, and
E is the modulus of elasticity (Fig. 1);
Fig. 1. Rectangular closed thin-walled cross-sections with coordinate systems: (a) three cell section; (b) two cell-section.
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dws

dx
¼ �bs; GAs

dws

dx
¼ Qz; GAs

d2ws

dx2
¼ dQz

dx
¼ �qz; ð2Þ
where ws = ws(x) is the displacement in the z-direction due to shear, bs = bs(x) is the angular displacement
with respect to the y-axis due to shear, As is the cross-section shear area;
wt ¼ wþ ws; bt ¼ b þ bs; ð3Þ

where wt is the total displacement in the z-direction and bt is the total angular displacement with respect to
the y-axis.

The stresses are given by
rx ¼
My

Iy
z; sxs ¼

T xs

t
; T xs ¼

Qz

Iy
S�
y ; ð4Þ
where rx = rx(x, s) is the normal stress in the x-direction, sxs = sxs(x, s) is the shear stress in the s-direction,
Txs = Txs(x, s) is the shear flow in the s-direction, z = z(s) is the cross-section rectangular co-ordinate,
S�
y ¼ S�

yðsÞ is the statical moment of the ‘‘cut-off portion’’ of the cross-section with respect to the y-axis,
t = t(s) is the wall thickness and s is the cross-section curvilinear co-ordinate, with the origins K0 and K,
where Txs = 0 (Fig. 1);

It is assumed that the shear influence on bending is small; it will be taken into account in the calculations
of displacements only, by using (2) and (3). The cross-section contour is assumed ‘‘rigid’’ (neglecting the
contour contraction).

Thus, from Hooke�s law,
rx ¼ Eex; ð5Þ

where ex = ex(x, s) is the strain in x-direction. The shear flow is defined by the normal stress rx, by the equi-
librium equation in the x-direction
orx

ox
t þ oT xs

os
¼ 0: ð6Þ
The normal stress in the s-direction rs = rs(x, s), which is ignored in Eq. (5) as a small quantity, can be
obtained by the shear flow, by using the equilibrium equation in the s-direction
oT sx

ox
þ oðrstÞ

os
¼ 0; ð7Þ
where Tsx = Txs.
3. Thin-walled beams subjected to bending with the cross-section distortion

3.1. Distortion of the cross-sections of thin-walled beams subjected to bending

If the frames or diaphragms are omitted, or the cross-section is not stiff by itself, the cross-sections of
thin-walled beams are no longer forced to maintain their shape. In the limit, it may be assumed that the
beam walls are hinged along their longitudinal edges. Thus, the walls will be loaded by forces per unit
length along their longitudinal edges, in their planes (Pavazza, 2002).

In the case of symmetrical closed thin-walled cross-sections with three cells (Fig. 2a), the inner vertical
walls and the central horizontal walls may be treated due to symmetry as a unique beam with the rigid
cross-section (beam component 1). Two cell cross-sections may be treated as a special case of three cell
cross-sections (Fig. 2b).
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Fig. 2. Rectangular closed thin-walled sections with hinged walls: (a) three cell section; (b) two cell-section.
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3.2. Beam components

The beam may be decomposed into four beam components (Fig. 3). In the case of double symmetric
beam cross-sections, it may be assumed that the beam components 1 and 3 are subjected to bending with
influence of shear and the beam components 2 and 2 0 to tension and shearing due to distortion of the cross-
section shape.
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Fig. 3. Beam components of the beam with double symmetrical three cell thin-walled cross-section.
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For the beam components 1 and 3, the following differential equations may be written (i = 1,3)
(Pavazza, 1991)
dwi

dx
¼ �bi; EIyi

d2wi

dx2
¼ �Myi; EIyi

d3wi

dx3
¼ � dMyi

dx
¼ �ðQzi � myiÞ;

EIyi
d4wi

dx4
¼ � d2Myi

dx2
¼ � d

dx
ðQzi � myiÞ ¼ qzi þ

dmyi

dx
;

ð8Þ
where wi = wi(x) is the displacement in the zi-direction, bi = bi(x) is the angular displacement with respect to
the yi-axis, Iyi is the cross-section moment of inertia with respect to the yi-axis, Myi = Myi(x) is the bending
moment with respect to the yi-axis, Qzi = Qzi(x) is the shearing force with respect to the zi-axis, qzi = qzi(x) is
the force per unit length in zi-direction, myi = myi(x) is the moment per unit length, Oixiyizi is the rectan-
gular co-ordinate system, where the yi, zi-axes coincide with principal axes of the corresponding cross-
sections;
dwsi

dx
¼ �bsi; GAsi

dwsi

dx
¼ Qzi; GAsi

d2wsi

dx2
¼ dQzi

dx
¼ �qzi; ð9Þ
where wsi = wsi(x) is the displacement in the zi-direction due to shear, bsi = bsi(x) is the angular displace-
ment with respect to the yi-axis due to shear, Asi is the cross-section shear area;
wti ¼ wi þ wsi; bti ¼ bi þ bsi; ð10Þ

where wti is the total displacement in the zi-direction and bti is the total angular displacements with respect
to the yi-axis.

For the beam component 1, the moment per unit length may be expressed as
my1 ¼ T Ah; ð11Þ

where TA = TA(x) is the force per unit length along the longitudinal edge A and h is the height of the cross-
section. The stresses may be expressed as follows
rx1 ¼
My1

Iy1
z1; sxs1 ¼

T xs1

t1
; T xs1 ¼

ðQz1 � my1Þ
Iy1

S�
y1 þ T AjA�A0 : ð12Þ
In this equation TA is assumed to be distributed along the vertical wall of the beam components 1 only,
as a constant (which is expressed symbolically by a vertical line); it represents the influence of the beam
components 2 on the beam component 1.

For the beam component 3, similarly, one has
my3 ¼ T Bh; ð13Þ

where TB = TB(x) is the force per unit length along the longitudinal edge B;
rx3 ¼
My3

Iy3
z3; sxs3 ¼

T xs3

t3
; T xs3 ¼

ðQz3 � my3ÞS�
y3

Iy3
þ T B: ð14Þ
Here is assumed that the origin of s is at B, i.e B 0 (Fig. 1).
For the beam component 2, it may be written (Pavazza et al., 2001)
EA2

du2p

dx
¼ N 2; EA2

d2u2p

dx2
¼ dN 2

dx
¼ �qx2; ð15Þ
where
qx2 ¼ T A þ T B; ð16Þ
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where A2 is the cross-section area of the beam component 2, u2p = u2p(x) is the displacement of the cross-
section in the x2-direction as a plane section and N2 = N2(x) is the normal force;
Qz2 ¼ my2;
dQz2

dx
¼ �qz2 ¼

dmy2

dx
; ð17Þ
where
my2 ¼ �ðT A � T BÞ
b
2
: ð18Þ
Then
u2 ¼ u2p þ f ;
where u2 = u2(x,z2) is the displacement in the x2-direction; f = f(x,z) is warping due to shear
f ¼ Qz2

GA2

z2 þ
qx2
A2E

z22 �
b2

12

� �
þ g; ð19Þ
where g = g(x,z) is a function that can be obtained by assuming that f = 0 when w1 = w3, when according
to (4)
T A � T B ¼ kðT A þ T BÞ; k ¼ 2z20
b

¼
S�
yA � S�

yB

S�
yA þ S�

yB

; ð20Þ
where z20 is the coordinate of the shear flow zero point for the rigid cross-section, S�
yA and S�

yB are the statical
moments of the cut-off portion of the rigid cross-section for the points A and B, respectively.

Thus, from (19) and (20)
g ¼ kðT A þ T BÞb
2GA2

z2 �
T A � T B

kEA2

z22 �
b2

12

� �
; ð21Þ
i.e.
f ¼ ½T A � T B � kðT A þ T BÞ

b2

2GA2

2G
kE

z2
b

� �2

þ z2
b
� G

6kE

� �
; ð22Þ
and
u2 ¼ u2p � ½T A � T B � kðT A þ T BÞ

b2

2GA2

2G
kE

z2
b

� �2

þ z2
b
� G

6kE

� �
: ð23Þ
The stresses then read
rx2 ¼ Eex ¼
N 2

A2

� Eb2

2GA2

2G
kE

z2
b

� �2

þ z2
b
� G

6kE

� �
d

dx
½T A � T B � kðT A þ T BÞ
;

sxz2 ¼
T xz2

t2
; T xz2 ¼ � 1

2
ðT A � T BÞ þ ðT A þ T BÞ

z2
b
;

ð24Þ
where ex ¼ ou2
ox .

The stresses given by (24) satisfy the equilibrium equation given by (6) only if
d

dx
½T A � T B � kðT A þ T BÞ
 ¼ const; ð25Þ
otherwise the solution can be used only approximately.
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The beam component 2 0 will be under antisymmetric tension and shearing, with respect to the beam
component 2.
3.3. Compatibility conditions

The compatibility conditions, along the edges A and B, taking into account (23), may be expressed as
� b1

h
2
¼ u2p þ

b2

4GA2

1� 2G
3kE

� �
½T A � T B � kðT A þ T BÞ
;

� b3

h
2
¼ u2p �

b2

4GA2

1þ 2G
3kE

� �
½T A � T B � kðT A þ T BÞ
:

ð26Þ
Hence
u2p ¼ �ðb1 þ b3Þ
h
4
þ b2

6EA2k
½T A � T B � kðT A þ T BÞ
;

T A � T B � kðT A þ T BÞ ¼ �ðb1 � b3Þ
GA2h

b2
:

ð27Þ
Then, referring to the first equation of (15) and the first and second equations of (8)
N 2 ¼ � My1

Iy1
þMy3

Iy3

� �
A2h
4

� My1

Iy1
�My3

Iy3

� �
GA2h
6kE

; ð28Þ
and, referring to the second equation of (15), (16), and the third equation of (8)
T A þ T B ¼ Qz1 � my1

Iy1
þ Qz3 � my3

Iy3

� �
A2h
4

þ Qz1 � my1

Iy1
� Qz3 � my3

Iy3

� �
GA2h
6kE

; ð29Þ
i.e.
T A þ T B ¼ �EA2h
4

� d3

dx3
ðw1 þ w3Þ �

GA2h
6k

� d3

dx3
ðw1 � w3Þ: ð30Þ
The second equation of (27), taking into account the first equation of (8), may be written as
T A � T B þ kðT A þ T BÞ ¼ �GA2h

b2
� d

dx
ðw1 � w3Þ: ð31Þ
The functions TA and TB may then be obtained from (30) and (31):
T A ¼ �EA2h
8

ð1þ kÞ d3

dx3
ðw1 þ w3Þ �

GA2h
12

1þ 1

k

� �
d3

dx3
ðw1 � w3Þ þ

GA2h

2b2

d

dx
ðw1 � w3Þ;

T B ¼ �EA2h
8

ð1� kÞ d3

dx3
ðw1 þ w3Þ þ

GA2h
12

1� 1

k

� �
d3

dx3
ðw1 � w3Þ �

GA2h

2b2

d

dx
ðw1 � w3Þ:

ð32Þ
For the case w1 = w3, one obtains
T A ¼ �EA2h
4

ð1þ kÞ d
3w1

dx3
; T B ¼ �EA2h

4
ð1� kÞ d

3w1

dx3
: ð33Þ
Substitution of (33) into (8), taking into account (11) and (13), yields
EIyc
d4w1

dx4
¼ qz1; EIys

d4w3

dx4
¼ qz3; ð34Þ
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where
Iyc ¼ Iy1 þ ð1þ kÞA2h
2

4
; Iys ¼ Iy3 þ ð1� kÞA2h

2

4
: ð35Þ
Since
qz1 þ qz3 ¼
qz
2
; Iyc þ Iys ¼

1

2
Iy ; ð36Þ
from (34), taking into account (1), one obtains w1 = w3 = w, i.e.
qz1
Iyc

¼ qz3
Iys

¼ qz
Iy
: ð37Þ
Thus, referring to (1) and (4), TA and TB, given by (32), become
T A ¼ Qz

Iy
S�
yA ¼ �T xsA; T B ¼ Qz

Iy
S�
yB ¼ T xsB; ð38Þ
where
S�
yA ¼ A2h

4
ð1þ kÞ; S�

yB ¼ A2h
4

ð1� kÞ: ð39Þ
3.4. Internal forces and displacements

By substituting (28) into the fourth equation of (8), taking onto account (11) and (13), the following dif-
ferential equations may be written
EIyc
d4w1

dx4
� EA2h

2

8
ð1þ kÞ 1� 2G

3kE

� �
d4

dx4
ðw1 � w3Þ �

GA2h
2

2b2
� d2

dx2
ðw1 � w3Þ ¼ qz1;

EIys
d4w1

dx4
þ EA2h

2

8
ð1� kÞ 1þ 2G

3kE

� �
d4

dx4
ðw1 � w3Þ þ

GA2h
2

2b2
� d2

dx2
ðw1 � w3Þ ¼ qz3;

ð40Þ
where Iyc and Iys are given by (35).
By multiplying the first equation from (36) by Iys/(Iyc + Iys) and the second by Iyc/(Iyc + Iys), and sub-

tracting the second equation from the first, the following differential equation may be written
EIycs
d4w1�3

dx4
� kb

d2w1�3

dx2
¼ qzcs; ð41Þ
where
w1�3 ¼ w1 � w3; qzcs ¼
qz1Iys � qz3Iyc

Iyc þ Iys
; kb ¼ GA2

2

h
b

� �2

;

Iycs ¼
IycIys

Iyc þ Iys
1�

ð1þ kÞ 1� 2G
3kE

� �
Iys þ ð1� kÞ 1þ 2G

3kE

� �
Iyc

IycIys
� A2h

2

8

� �
:

ð42Þ
The following differential equations can then be plotted (see Appendix A)
dw1�3

dx
¼ �b1�3; EIycs

d2w1�3

dx2
¼ �Mycs; EIycs

d3w1�3

dx3
¼ � dMycs

dx
¼ �ðQzcs � mycsÞ;

EIycs
d4w1�3

dx4
¼ � d2Mycs

dx2
¼ � d

dx
ðQzcs � mycsÞ ¼ qzcs þ

dmycs

dx
;

ð43Þ
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where
mycs ¼ kb
dw1�3

dx
¼ �kbb1�3: ð44Þ
Taking into account the first equation of (43), it may be written
d2w1

dx2
� d2w3

dx2
¼ d2w1�3

dx2
; ð45Þ
i.e. referring to the second equation of (8) and the second equation of (43)
My1

Iy1
�My3

Iy3
¼ Mycs

Iycs
: ð46Þ
From the equilibrium, it follows
My1 þMy3 � N 2h ¼ 1

2
My ; Qz1 þ Qz3 ¼

1

2
Qz: ð47Þ
Substitution of (28) into the first equation of (47) yields
My1

Iy1
I 0yc þ

My3

Iy3
I 0ys ¼

1

2
My ; ð48Þ
where
I 0yc ¼ Iy1 þ
A2h

2

4
1þ 2G

3kE

� �
; I 0ys ¼ Iy3 þ

A2h
2

4
1� 2G

3kE

� �
: ð49Þ
Here
I 0yc þ I 0ys ¼
1

2
Iy : ð50Þ
From (46) and (48), taking into account (50), it may be written
My1 ¼
My

Iy
Iy1 þ 2

I 0ys
Iycs

�Mycs

Iy
Iy1; My3 ¼

My

Iy
Iy3 � 2

I 0yc
Iycs

�Mycs

Iy
Iy3; ð51Þ
and according to third equation of (8) and the third equation of (43)
Qz1 � my1 ¼
Qz

Iy
Iy1 þ 2

I 0ys
Iycs

� Qzcs � mycs

Iy
Iy1;

Qz3 � my3 ¼
Qz

Iy
Iy3 � 2

I 0yc
Iycs

� Qzcs � mycs

Iy
Iy3:

ð52Þ
According to (51), taking into account the second equations of (8), (1) and (43), it may be written
w1 ¼ wþ Dw1; w3 ¼ wþ Dw3;

b1 ¼ b þ Db1; b3 ¼ b þ Db3;
ð53Þ
where
Dw1 ¼ 2
I 0ys
Iy

w1�3; Dw3 ¼ �2
I 0yc
Iy

w1�3;

Db1 ¼ 2
I 0ys
Iy

b1�3; Db3 ¼ �2
I 0yc
Iy

b1�3:

ð54Þ
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From (28) and (51), one has
N 2 ¼ �My

Iy
� A2h

2
þ
I 0yc � I 0ys
Iycs

�Mycs

Iy
� A2h

2
�
I 0yc þ I 0ys
Iycs

�Mycs

Iy
� GA2h

3kE
: ð55Þ
From (53), it follows
w ¼ 1

2
ðw1 þ w3Þ þ

I 0yc � I 0ys
Iy

w1�3: ð56Þ
Thus, taking into account the third equations of (1), (41) and (43), TA and TB given by (32) may be writ-
ten as
T A ¼ Qz

Iy
S�
yA �

Qzcs

Iy
�
I 0yc � I 0ys
Iycs

S�
yA � kb

b1�3

h
;

T B ¼ Qz

Iy
S�
yB �

Qzcs

Iy
�
I 0yc � I 0ys
Iycs

S�
yB þ kb

b1�3

h
;

ð57Þ
where S�
yA and S�

yB are given by (39).
By substituting (57) into (52), taking into account (12) and (14), (35), (39) and (49), where
Iy1 þ S�
yAh ¼ Iyc; Iy3 þ S�

yBh ¼ Iys;
2I 0ysIy1 þ ðI 0yc � I 0ysÞS�

yAh

Iy
¼

2I 0ycIy3 þ ðI 0yc � I 0ysÞS�
yBh

Iy
¼ Iycs;
the following relation can be obtained
Qz1 ¼
Qz

Iy
Iyc þ Qzcs; Qz3 ¼

Qz

Iy
Iys � Qzcs: ð58Þ
Hence, taking into account the second equation of (47)
Qzcs ¼
Qz1Iys � Qz3Iyc

Iyc þ Iys
: ð59Þ
The displacements due to shear ws and wsi may be obtained, according to the second equations of (2) and
(9), as follows
ws ¼
My �M ðAÞ

y

GAs

; ws1 ¼
My1 �M ðAÞ

y1

GAs1

; ws3 ¼
My3 �M ðAÞ

y3

GAs3

; ð60Þ
where M ðAÞ
y , M ðAÞ

y1 and M ðAÞ
y3 are the bending moments of the beam and the beam components 1 and 3 at the

beam left end. From (60) and (51), it follows
ws1 ¼
My �M ðAÞ

y

GAs1

� Iy1
Iy

þ
Mycs �M ðAÞ

ycs

GAs1

� 2
I 0ysIy1
IycsIy

;

ws3 ¼
My �M ðAÞ

y

GAs3

� Iy3
Iy

�
Mycs �M ðAÞ

ycs

GAs3

� 2
I 0Iy3
IycsIy

:

ð61Þ
The unknown shear areas As1 and As3 can be obtained from the condition: when ws1 = ws3 = ws, then
w1 = w3 = w, Mycs = 0. Thus, from (61) and (60)
As1 ¼
Iy1
Iy

As;As3 ¼
Iy3
Iy

As: ð62Þ
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By substituting (62) into (61), one may finally write
ws1 ¼ ws þ Dws1; ws3 ¼ ws þ Dws3; ð63Þ

where
Dws1 ¼ 2
I 0ys
Iycs

�
Mycs �M ðAÞ

ycs

GAs

; Dws3 ¼ �2
I 0yc
Iycs

�
Mycs �M ðAÞ

ycs

GAs

: ð64Þ
3.5. Stresses

The stresses for the beam component 1 may finally be obtained by substituting the first equation of (51)
and the first equation of (52) into (12):
rx1 ¼
My1

Iy
z1 þ Drx1; T xs1 ¼

Qz

Iy
S�
y1 þ

Qz

Iy
S�
yA

				
A0

A

þ DT xs1; ð65Þ
where
Drx1 ¼
2I 0ys
Iycs

�Mycs

Iy
z1;

DT xs1 ¼
2I 0ys
Iycs

� Qzcs � mycs

Iy
S�
y1 �

Qzcs

Iy
�
I 0yc � I 0ys
Iycs

S�
yA

				
A0

A

þ mycs

h

			A0

A
:

ð66Þ
The stresses for the beam component 3 may be obtained by substituting the second equation of (51) and
the second equation of (52) into (14):
rx3 ¼
My3

Iy
z3 þ Drx3; T xs3 ¼

Qz

Iy
S�
y3 þ

Qz

Iy
S�
yB þ DT xs3; ð67Þ
where
Drx3 ¼ �
2I 0yc
Iycs

�Mycs

Iy
z3;

DT xs3 ¼ �
2I 0yc
Iycs

� Qzcs � mycs

Iy
S�
y3 �

Qzcs

Iy

I 0yc � I 0ys
Iycs

S�
yB �

mycs

h
:

ð68Þ
The stresses for the beam component 2 may be obtained by substituting (55) and (57) into (24), taking
into account the first equations of (1) and (43), and (39):
rx2 ¼ �My

Iy
� h

2
þ Drx2; T xz2 ¼ � Qz

2Iy
ðS�

yA � S�
yBÞ þ

Qz

Iy
ðS�

yA þ S�
yBÞ

z2
b
þ DT xz2; ð69Þ
where
Drx2 ¼
I 0yc � I 0ys
Iycs

�Mycs

Iy
� h

2
�
I 0yc þ I 0ys
Iycs

�Mycs

Iy
� Gh

3kE
þ
I 0yc þ I 0ys
Iycs

�Mycs

Iy
� z2

b
h

þ
I 0yc þ I 0ys
Iycs

�Mycs

Iy
� Gh

3kE
6

z2
b

� �2

� 1

2

� �
;

DT xz2 ¼
Qzcs

2Iy
�
I 0yc � I 0ys
Iycs

ðS�
yA � S�

yBÞ �
Qzcs

Iy
�
I 0yc � I 0ys
Iycs

ðS�
yA þ S�

yBÞ
z2
b
� mycs

h
:

ð70Þ
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The force per unit length qz2 can be obtained from (17) and (18), taking into account (57):
qz2 ¼ � qz2
Iy

ðS�
yA � S�

yBÞ
b
2
þ Dqz2; ð71Þ
where
Dqz2 ¼
qzcs
Iy

�
I 0yc � I 0ys
Iycs

ðS�
yA � S�

yBÞ
b
2
�Mycs

Iycs
� b
h
kb: ð72Þ
Here
ry2A ¼ � qz2
t2

; ð73Þ
where ry2A is the normal stress in the y2-direction for y2 = �b/2 and t2 is the thickness of the beam com-
ponent 2.

The first part of the expressions for stresses represent the stresses for the case of rigid cross-sections. The
second part (Dr and DT) represent the additional stresses due to cross-section distortion, defined by the
load qzcs and internal forces Qzcs and Mycs, and the moment mycs (see Appendix A).

The same holds for the displacements given by (53) and (54), and (63) and (64), where the additional
displacements due to distortion are defined by the displacements w1�3 and b1�3, and the moment Mycs

(see Appendix A).

3.6. Boundary conditions

The boundary conditions at the ends of a beam may be formulated as follows
w1 ¼ w�
1; w3 ¼ w�

3; b1 ¼ b�
1; b3 ¼ b�

3: ð74Þ

Then, according to the first equation of (41),
w1�3 ¼ w�
1 � w�

3; b1�3 ¼ b�
1 � b�

3; ð75Þ

and according to (56)
w ¼ 1

2
ðw�

1 þ w�
3Þ þ

I 0yc � I 0ys
Iy

ðw�
1 � w�

3Þ; b ¼ 1

2
ðb�

1 þ b�
3Þ þ

I 0yc � I 0ys
Iy

ðb�
1 � b�

3Þ; ð76Þ
and according to (27)
u2 ¼ �ðb�
1 þ b�

3Þ
h
4
þ b2

6EA2k
½T A � T B � kðT A þ T BÞ
;

T A � T B � kðT A þ T BÞ ¼ �ðb�
1 � b�

3Þ
GA2h

b2
:

ð77Þ
Thus, the boundary conditions are defined by the components w�
1, w

�
3 and b�

1, b�
3.

In terms of forces, the boundary conditions may be formulated as follows
Qz1 ¼ Q�
z1; Qz3 ¼ Q�

z3; My1 ¼ M�
y1; My3 ¼ M�

y3: ð78Þ
Then, according to (59) and (46)
Qzcs ¼
Q�

z1Iys � Q�
z3Iyc

Iyc þ Iys
; Mycs ¼

M�
y1

Iy1
�
M�

y3

Iy3

� �
Iycs; ð79Þ
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and from (58) and (48),
Qz ¼ 2ðQ�
z1 þ Q�

z3Þ; My ¼ 2
I 0yc
Iy1

M�
y1 þ

I 0ys
Iy3

M�
y3

� �
: ð80Þ
Here the boundary conditions are defined by the components Q�
z1, Q

�
z3 and M�

y1, M
�
y3.

The ‘‘simply supported’’ ends may be defined by
wt1 ¼ w1 ¼ wt3 ¼ w3 ¼ 0; My1 ¼ My3 ¼ 0: ð81Þ
Then, according to the first equation of (75) and the second equation of (79)
w1�3 ¼ 0; Mycs ¼ 0; ð82Þ
and according to the first equation of (76) and the second equation of (80)
wt ¼ w ¼ 0; My ¼ 0: ð83Þ
Referring to (65), (67), (69) and (4), it follows
rx1 ¼ rx3 ¼ rx2 ¼ rx ¼ 0: ð84Þ
For the ‘‘built-in end’’, it may be written
w1 ¼ wt1 ¼ w3 ¼ wt3 ¼ 0; b1 ¼ b3 ¼ 0; ð85Þ

for the left end (A);
wt1 ¼ w1 þ
M ðBÞ

y1 �M ðAÞ
y1

GAs1

¼ 0; wt3 ¼ w3 þ
M ðBÞ

y3 �M ðAÞ
y3

GAs3

¼ 0; b1 ¼ b3 ¼ 0; ð86Þ
for the right end (B).
Then, according to (75),
w1�3 ¼ 0; b1�3 ¼ 0; ð87Þ

and according to (76),
w ¼ 0; b ¼ 0; ð88Þ

for the left end (A);
wt ¼ wþ
M ðBÞ

y �M ðAÞ
y

GAs

¼ 0: ð89Þ
for the right end (B). The ‘‘free end’’ may be defined as
Qz1 ¼ 0; Qz3 ¼ 0; My1 ¼ 0; My3 ¼ 0: ð90Þ

Then, according to (79),
Qzcs ¼ 0; Mycs ¼ 0; ð91Þ

and according to (80),
Qz ¼ 0; My ¼ 0: ð92Þ

Referring to (65), (67), (69) and (4), it follows
rx1 ¼ rx3 ¼ rx2 ¼ rx ¼ 0; T xs1 ¼ T xs3 ¼ T xz2 ¼ T xs ¼ 0: ð93Þ
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4. Illustrative examples

In order to illustrate the application of the expressions for the stresses and displacements, a thin-walled
beam with the double symmetric three-cell closed cross-section with the constant thickness is considered
(see Appendix A).

4.1. Geometrical properties and the material
h ¼ 2b; A ¼ 16A2; Iy ¼
32

3
A2b

2; S�
yA ¼ 1

6
A2b; S�

yB ¼ 5

6
A2b; k ¼ � 2

3
;

Iy1 ¼
8

3
A2b

2; Iy3 ¼
2

3
A2b

2; I 0yc � 3:282A2b
2; I 0ys � 2:052A2b

2;

Iyc ¼ 3A2b
2; Iys ¼

7

3
A2b

2; Iycs � 0:923A2b
2;

kb ¼ 2GA2;
E
G

¼ 2:6; v ¼ 0:456
l
b
;

Iy
Iycs

� 11:557;
2I 0yc
Iycs

� 7:112;
2I 0ys
Iycs

� 4:446;
I 0yc þ I 0ys
Iycs

� 5:779;

I 0yc � I 0ys
Iycs

� 1:333;
2I 0yc
Iy

� 0:615;
2I 0ys
Iy

� 0:385:
Here l is the length of the beam. The shear areas are calculated as pure geometrical properties, for Pois-
son�s ratio equal to zero (Bhat and de Oliveira, 1985; Cowper, 1966)
As ¼ AK; K ¼ 0:424; As ¼ AK ¼ 6:784A2:
4.2. Simply supported beam under uniformly distributed load

The internal forces at x = 0 (Example 1, Appendix A)
Qzcs ¼
qzcsl
2

¼ qzl
2

� qzcs
qz

¼ Qz

qzcs
qz

;

Qzcs � mycs ¼
qzcsl
2

v3 ¼ Qz

qzcs
qz

v3;

mycs ¼ Qz

qzcs
qz

ð1� v3Þ:
The internal forces and displacements at x = l/2 (Example 1, Appendix A):
Mycs ¼
qzcsl

2

8
v0 ¼

qzl
2

8
� qzcs

qz
v0 ¼ My

qzcs
qz

v0;

w1�3 ¼
5qzcsl

4

384EIycs
u0 ¼ 11:557

5qzl
4

384EIy
� qzcs

qz
u0 ¼ 11:557w

qzcs
qz

u0 ¼ 11:557wt
qzcs
qz

� u0

g0

;

wt ¼ g0w; g0 ¼ 1þ 48EIy
5GAsl

2
¼ 1þ 39:245

b
l

� �2

:
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Additional stresses due to distortion at x = 0:
DT xs1 ¼ 4:446
Qzcs � mycs

Iy
S�
y1 � 1:333

Qzcs

Iy
S�
yA

			A0

A
þ mycs

2b

			A0

A

¼ 4:446
Qz

Iy
S�
y1

qzcs
qz

v3ðvÞ � 1:333
Qz

Iy
S�
yA

			A0

A

qzcs
qz

þ 5:333
Qz

Iy
A2b

qzcs
qz

ð1� v3Þ
				
A0

A

;

DT xs3 ¼ �7:112
Qzcs � mycs

Iy
S�
y3 � 1:333

Qzcs

Iy
S�
yB �

mycs

2b

¼ �7:112
Qz

Iy
S�
y3

qzcs
qz

v3 � 1:333
Qz

Iy
S�
yB

qzcs
qz

� 5:333
Qz

Iy
A2b

qzcs
qz

ð1� v3Þ;

DT xz2 ¼ 0:667
Qzcs

Iy
ðS�

yA � S�
yBÞ � 1:333

Qzcs

Iy
ðS�

yA þ S�
yBÞ

z2
b
� mycs

2b

¼ 0:667
Qz

Iy
ðS�

yA � S�
yBÞ

qzcs
qz

� 1:333
Qz

Iy
ðS�

yA þ S�
yBÞ

z2
b
� qzcs

qz
� 5:333

Qz

Iy
A2b

qzcs
qz

ð1� v3Þ:
Additional stresses and displacements due to distortion at x = l/2:
Drx1 ¼ 4:446
Mycs

Iy
z1 ¼ 4:446

My

Iy
z1
qzcs
qz

v0;

Drx3 ¼ �7:112
Mycs

Iy
z3 ¼ �7:112

My

Iy
z3
qzcs
qz

v0;

Drx2 ¼ 1:333
Mycs

Iy
b� 2:223

Mycs

Iy
bþ 5:779

Mycs

Iy
2z2 þþ2:223

Mycs

Iy
b

3

2

2z2
b

� �2

� 1

2

" #

¼ 1:333
My

Iy
b
qzcs
qz

v0 � 2:223
My

Iy
b
qzcs
qz

v0 þ 5:779
My

Iy
2z2

qzcs
qz

v0 þ 2:223
My

Iy
b
qzcs
qz

3

2

2z2
b

� �
� 1

2

� �
v0;

Dw1 ¼ 0:385w1�3 ¼ 4:446w
qzcs
qz

u0 ¼ 4:446wt

qzcs
qz

� u0

g0

;

Dw3 ¼ �0:615w1�3 ¼ �7:112w
qzcs
qz

u0 ¼ �7:112wt

qzcs
qz

� u0

g0

;

Dws1 ¼ 4:446
Mycs �M ðAÞ

ycs

GAs

¼ 4:446ws

qzcs
qz

v0 ¼ 4:446wt

qzcs
qz

� v0

g0
0

;

Dws3 ¼ �7:112
Mycs �M ðAÞ

ycs

GAs

¼ �7:112ws

qzcs
qz

v0 ¼ �7:112wt

qzcs
qz

� v0

g0

;

wt ¼
ws

g0 ; g0
0 ¼

48EIy
5GAsl2

48EIy
¼

39:24 b
l

� �2
b
� �2 :
0 1þ
5GAsl2

1þ 39:24 l
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4.3. Built-in beam under uniformly distributed load

Components of the internal forces at x = 0 (Example 2, Appendix A):
Fig. 4.
cross-s
Mycs ¼ � qzcsl
2

12
v2 ¼ � qzl

2

12
� qzcs

qz
v2 ¼ My

qzcs
qz

v2;

Qzcs ¼
qzcsl
2

¼ qzl
2

� qzcs
qz

¼ Qz

qzcs
qz

:

Components of the internal forces and displacements at x = l/2 (Example 2, Appendix A):
Mycs ¼
qzcsl

2

24
v1 ¼

qzl
2

24
� qzcs

qz
v1 ¼ My

qzcs
qz

v1;

w1�3 ¼
qzcsl

4

384EIycs
u1 ¼ 11:557

qzl
4

384EIy
� qzcs

qz
u1 ¼ 11:557w

qzcs
qz

u1

¼ 11:557wt

qzcs
qz

� u1

g1

; wt ¼ g1w; g1 ¼ 1þ 48EIy
GAsl

2
¼ 1þ 196:2

b
l

� �2

:

Additional stresses due to distortion at x = 0:
Drx1 ¼ 4:446
Mycs

Iy
z1 ¼ 4:446

My

Iy
z1
qzcs
qz

v2;

DT xs1 ¼ 4:446
Qzcs

Iy
S�
y1 � 1:333

Qzcs

Iy
S�
yA

			A0

A
¼ 4:446

Qz

Iy
S�
y1

qzcs
qz

� 1:333
Qz

Iy
S�
yA

			A0

A

qzcs
qz

;

Drx3 ¼ �7:112
Mycs

Iy
z3 ¼ �7:112

My

Iy
z3
qzcs
qz

v2;
Geometrical properties of the rigid cross-section: (a) z-coordinate; (b) S�
y -coordinate (statical moment of the cut-off portion of

ection area).
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DT xs3 ¼ �7:112
Qzcs

Iy
S�
y3 � 1:333

Qzcs

Iy
S�
yB ¼ �7:112

Qz

Iy
S�
y3

qzcs
qz

� 1:333
Qz

Iy
S�
yB

qzcs
qz

;

Drx2 ¼ 1:333
Mycs

Iy
b� 2:223

Mycs

Iy
bþ 5:779

Mycs

Iy
2z2 þ 2:223

Mycs

Iy
b

3

2

2z2
b

� �2

� 1

2

" #

¼ 1:333
My

Iy
b
qzcs
qz

v2 � 2:223
My

Iy
b
qzcs
qz

v2 þ 5:779
My

Iy
2z2

qzcs
qz

v2 þ 2:223
My

Iy
b
qzcs
qz

3

2

2z2
b

� �
� 1

2

� �
v2;
0.0091

+0.0146

+

My 

Iy

x1,2,3

z
My 

Iy

z

1.0091
0.985 (0.987)

1.0091

(1.0012)0.985 (0.991)

0.066 

0.946

0.637

6.228

1.596

0.855

z

1.066 

1.946

1.637

7.228

0.596

0.145

Q
z
S*

y

I
y

T
xs1,2,3

QzS
*
y

I
y

Txs1,2,3

x1,2,3

(1.0203) (0.998)

(1.0109)

(0.354)

(1.087) 

(7.093)

(2.177) 

(1.691) 

1.066 
(1.087) 

0.596 (0.364)

(0.116)

(2.029) 
1.946

(a) (b)

(d)(c)

σ
σ

Stresses for the simply supported beam: (a) additional normal stresses due to distortion at x = l/2; (b) normal stresses due to
g with distortion at x = l/2 (FEM in brackets); (c) additional shear stresses due to distortion at x = 0; (d) shear stresses due to
g with distortion at x = 0.
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DT xz2 ¼ 1:333
Qzcs

2Iy
ðS�

yA � S�
yBÞ � 1:333

Qzcs

Iy
ðS�

yA þ S�
yBÞ

z2
b

¼ 0:667
Qz

Iy
ðS�

yA � S�
yBÞ

qzcs
qz

� 1:333
Qz

Iy
ðS�

yA þ S�
yAÞ

z2
b
� qzcs

qz
:

Additional stresses and displacements due to distortion at x = l/2:
Drx1 ¼ 4:446
Mycs

Iy
z1 ¼ 4:446

My

Iy
z1
qzcs
qz

v1;

Drx3 ¼ �7:112
Mycs

Iy
z3 ¼ �7:112

My

Iy
z3
qzcs
qz

v1;

Dw1 ¼ 0:385w1�3 ¼ 4:446w
qzcs
qz

u1 ¼ 4:446wt

qzcs
qz

� u1

g1

;

Dw3 ¼ �0:615w1�3 ¼ �7:112w
qzcs
qz

u1 ¼ �7:112wt

qzcs
qz

� u1

g1

;

Dws1 ¼ 4:446
Mycs �M ðAÞ

ycs

GAs

¼ 4:446ws

qzcs
qz

ðv1 þ v2Þ ¼ 4:446wt

qzcs
qz

ðv1 þ v2Þg0
1;

Dws3 ¼ �7:112
Mycs �M ðAÞ

ycs

GAs

¼ �7:112ws

qzcs
qz

ðv1 þ v2Þ ¼ �7:112wt

qzcs
qz

ðv1 þ v2Þg0
1;

wt ¼
ws

g0
1

; g0
1 ¼

48EIy
GAsl2

1þ 48EIy
GAsl2

¼
196:2 b

l

� �2
1þ 196:2 b

l

� �2 :

The additional stresses and displacements due to distortion are calculated for l/b = 32, i.e. v = 14.59

(u0 = 0.0112, u1 = 0.0564, v0 = 0.0094, v1 = 0.0282, v2 = 0.1915, v3 = 0.0685, w0 = 0.0131); g0 = 1.0383,
g0
0 ¼ 0:0369, g1 = 1.192, g0

1 ¼ 0:161.
Displacements for the simply supported beam at x = l/2: (a) additional displacements due to distortion; (b) displacements due to
g with distortion (FEM in brackets).
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The stresses and displacements are calculated for the beam subjected to uniformly distributed load
qz1 = qz/2, qz3 = 0 (qzcs/qz = 7/32), both for simply supported and built-in beam ends, for x = l/2 and
x = 0. The results are given in respect to the stresses and displacements for rigid cross-sections (Figs. 4–8).

In order to check accuracy of the obtained results, the normal stresses and displacements at x = l/2 for
the simply supported beam are also calculated by the finite element method; the shear stresses are calculated
for x = 0. The 3D membrane model of one-quarter of the beam is investigated. A high mesh density with
3200 quadrilateral elements and 12880 nodes is used. The displacements of the nodes are restricted at x = 0
0.0274

+0.0439

My 

Iy

x1,2,3

z
M

y 

Iy

x1,2,3

z

1.027
0.956 (0.963)

(0.996)

+
1.027

0.956 (0.963)

0.932 

0.757

0.845

0.243

0.766

1.932 

1.757

1.845

0.709
0.757

0.234

Q
z
S*

y

I
y

T
xs1,2,3

Q
z
S*

y

I
y

T
xs1,2,3

0.292 

(1.062)

(0.996)(1.056)

(a) (b)
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Fig. 7. Stresses for the built-in beam: (a) additional normal stresses due to distortion at x = l/2; (b) normal stresses due to bending with
distortion at x = l/2; (c) additional shear stresses due to distortion at x = 0; (d) shear stresses due to bending with distortion at x = 0
(FEM in brackets).



Fig. 8. Stresses and displacements for the built-in beam: (a) additional normal stresses at x = 0; (b) stresses due to bending with
distortion at x = 0; (c) additional displacements due to distortion at x = l/2; (d) displacements due to bending with distortion at x = l/2
(FEM in brackets).
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in the cross-section contour direction and at x = l/2 in the beam longitudinal direction; at y = 0 (in the
plane of symmetry) the displacements are restricted in the beam transverse direction.
5. Conclusion

An analytical method has been applied to estimate the additional stresses and displacements due to dis-
tortion of the cross-sections of thin-walled beams subjected to bending. Simple rectangular cross-sections
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with three and two closed cells with double axes of symmetry are considered. It is assumed that beams are
long enough that warping due to shearing may be ignored in the stress calculation (in the case of rigid cross-
sections, i.e. when the cross-sections maintain their shape). The cross-section distortion is considered in the
limit, by assuming that beam walls are hinged along their longitudinal edges.

The additional stresses and displacements due to the cross-section distortion are given in the analytical
closed form and compared to the stresses and displacements of the ordinary bending theory (where the
cross-sections maintain their shape).

It is shown that the additional stresses and displacements due to the cross-section distortion can be sig-
nificant (compared to the stresses and displacements of the ordinary bending theory), particularly, the addi-
tional shear stresses.

A typical cross-section with three cells is analysed, where the ratio of the beam length and the cross-sec-
tion breadth was equal 8 (the beam length to the cross-section height ratio equal 16) is analysed. The loads
were distributed along the inner vertical walls only. The ends of the beam were simply supported and built-
in, respectively.

The comparison for the simply supported beam under uniformly distributed load along the inner vertical
walls to the finite element solution of the problem has shown acceptable agreements of obtained results.

Although the hinges between plates do not occur in actuality, it is important to analyse such conditions,
together with the ordinary beam theory (where the cross-section is assumed rigid), as limits of the actual
behaviour of the structure. In fact, there are no enough stiff cross-sections in actual thin-walled beam struc-
tures to guarantee the cross-section shape, especially under nonuniform load distributions in the transverse
direction.

The real stiffness of the cross-section structure can be easily included in the consideration. The torsional
stiffness of the plates together with bending stiffness of transverse framing (if the structure is framed) and
the shear stiffness of transverse bulkheads (if there are any) should be taken into account.

The same approach may be used in the case of thin-walled curved beams. The cross-sections of the com-
ponents beams may be approximate by rectangular cross-sections; or be considered as curvilinear cross-sec-
tions. In the compatibility conditions and equilibrium equations, the cross-section properties of the beam
components will be changed only. It should be noted that relative vertical displacements are small, in com-
parison with vertical displacement of the beams. In that case, in the finite element analysis the shell elements
must be used.
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Appendix A

The solution of Eq. (41) may be presented, by the method of initial parameters, as follows (Pavazza,
1991)
v ¼ Kv0 þ I; ðA:1Þ
where
v ¼ ½Qzcs Mycs b1�3 w1�3 
T; v0 ¼ ½Qzcsð0Þ Mycsð0Þ b1�3ð0Þ w1�3ð0Þ 
T;
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K ¼

1 0 0 0
l
g sh

g
l x ch g

l x EIycs
g
l sh

g
l x 0

l2

EIycs
g2 ch g

h x� 1
� �

l
EIycsg

sh g
l x ch g

l x 0

� l2

EIycsg2
l
g sh

g
l x� x

� �
� l2

EIycsg2
ch g

l x� 1
� �

� l
g sh

g
l x 1

2
666664

3
777775;

I ¼ �EIycs
d3wð1�3Þp

dx3 þ EIycs
g2

l2
� dwð1�3Þp

dx �EIycs
d2wð1�3Þp

dx2 � dwð1�3Þp
dx wð1�3Þp

h iT
; ðA:2Þ
where
wð1�3Þp ¼
1

EIycs
� l2

g2

Z x

0

l
g
sh

g
l
ðx� nÞ � ðx� nÞ

� �
qzcsdn; g ¼ l

ffiffiffiffiffiffiffiffiffiffi
kb

EIycs

s
: ðA:3Þ
For the uniformly distributed load, qzcs = qcs:
wð1�3Þp ¼
qcsl

2

EIycsg2

l2

g2
ch

g
l
x� 1

� �
� x2

2

� �
;

I ¼ �qcsx �qcs
l2

g2 ch g
l x� 1

� �
� qcsl

2

EIycsg2
l
g sh

g
l x� x

� �
qcsl

2

EIycsg2
l2

g2 ch g
l x� 1

� �
� x2

2

h ih iT
:

ðA:4Þ
In the case of many load distribution fields, it may be written
v ¼ Kv0 þ Iþ
Xi

r¼2

ðKrvar�1;r þ IrÞ; ði ¼ 2; 3; . . . ;mÞ; ðA:5Þ
where
var�1;r ¼ ½Qzcs;ar�1;r
Mycs;ar�1;r bð1�3Þar�1;r wð1�3Þar�1;r 
T;

Kr ¼

1 0 0 0
l
g sh

g
l ~x ch g

l ~x EIycs
g
l sh

g
l ~x 0

l2

EIycsg2
ch g

l ~x� 1
� �
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EIycsg

sh g
l ~x ch g
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g sh
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g sh
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l ~x 1
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777775;
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dx3 þ EIycs
g2

l2
� dwð1�3Þp;r

dx �EIycs
d2wð1�3Þp;r

dx2 � dwð1�3Þp;r
dx wð1�3Þp;r

h iT
; ~x ¼ x� ar�1:

ðA:6Þ
For the partly distributed uniform load, along 0 6 x 6 a1 (r = 2):
wð1�3Þp;r;2 ¼ � qcsl
2

EIycsg2

Z x

0

l
g
sh

g
l
ðx� nÞ � ðx� nÞ

� �
dn ¼ � qcsl

2

EIycsg2

l2

g2
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g
l
ðx� a1Þ � 1

h i
� ðx� a1Þ2

2

( )
;

I2 ¼
"
qcsðx� a1Þqcs

l2

g2
ch

g
l
ðx� a1Þ � 1

h i qcsl
2

EIyg2

l
g
sh

g
l
ðx� a1Þ � ðx� a1Þ

� �

� qcsl
2

EIycsg2

l2

g2
ch

g
l
ðx� a1Þ � 1

h i
� ðx� a1Þ2

2

( )#T

: ðA:7Þ
For the concentrated force, Q�
zcs, at x = ar�1:
var�1;r ¼ ½�Q�
zcs 0 0 0 
T: ðA:8Þ
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Qzcs ¼
qcsl
2
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x
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� �
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g
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� x
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� �
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ðA:9Þ
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;Qzcsð0Þ � mycsð0Þ ¼ �QzcsðlÞ þ mycsðlÞ ¼

qcsl
2

v3ðvÞ;
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Example 2. Built-in beam under the uniformly distributed load; boundary conditions by (85):
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� �
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v ¼ 2

g
wsh

g
2
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Qzcsð0Þ ¼ �QzcsðlÞ ¼
qcsl
2
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Example 3. Simple supported beam under the concentrated force Q�
zcs ¼ F at x = l/2; boundary conditions

by (81):
Qzcsð0Þ ¼ �QzcsðlÞ ¼
F
2
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Example 4. Built-in beam under the concentrated force at x = l/2; boundary conditions given by (85):
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