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Abstract

This paper deals with distortion of the cross-section contour of thin-walled beams with simple multi-cell closed rec-
tangular cross-sections. The cross-section distortion is considered in the limit case. It is assumed that beam plates are
hinged together along their longitudinal edges. Double symmetric three and two-cell closed cross-sections are consid-
ered. The stresses and displacements are obtained in the closed analytical form. The additional stresses and displace-
ments due to distortion with respect to the stresses and displacements of the ordinary theory of bending are
obtained. The boundary conditions are given in the general form. Some illustrative examples are given.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The reliability of the assumption, in the theory of bending of thin-walled beams, that the shape of the
cross-section is maintained depends on the stiffness of the beam transverse framing, or the cross-section it-
self (Vlasov, 1961); in some cases, also on the load distribution in the transverse direction (Kollbrunner and
Basler, 1969).

The thin-walled beams are assembled of a number of thin plates that are restrained along their longitu-
dinal edges. The plates can be stiffened by frames, usually in the transverse direction; sometimes, also by
transverse bulkheads (“diaphragms”). Transverse framing, or the cross-section itself, cannot prevent the
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cross-section distortion entirely. In the limit, it may be assumed that plates are “hinged” along their lon-
gitudinal edges.

These two different types of structural behaviour (with the “rigid” cross-sections and hinged cross-sec-
tions) may be considered as two limiting cases of stresses and deformations of the actual structure (Kollb-
runner and Basler, 1969).

The theory that deals with such idealized beams, with hinged plates, is the folded plate theory (Schwyzer,
1920; Kollbrunner and Basler, 1969). By the theory, the longitudinal deformations and therefore the lon-
gitudinal normal stresses are equal at hinged connections. Hence, the normal stresses are linearly distrib-
uted over the cross-sections of each plate. The end cross-sections are assumed rigid. Each plate is at
most preceded and followed by one plate only; the method is no longer applicable if one hinge belongs
to three or more plates.

The problem of the cross-section distortion can be solved in an “exact” way, in general, by using three-
dimensional models (Hughes, 1983; Bull, 1988). However, in the case of ordinary beams, with small dimen-
sions of the cross-section contour with respect to the length of the beam, simpler analytical as well as
numerical methods may also be applied (Boitzov, 1972; Boswell and Zhang, 1984; Boswell and Li, 1995;
Hsu et al., 1995; Kim and Kim, 1999, 2000a,b, 2001; Pavazza and Matokovi¢, 2000; Kim et al., 2002;
Pavazza, 2002).

In this paper, an analytical approach to the problem of the cross-section distortion of prismatic beams
with closed rectangular thin-walled cross-sections subjected to bending with influence of shear will be con-
sidered. The double symmetric cross-sections with three and two closed cells will be analysed. The results
will be given in the analytical closed form, suitable for parametric studies.

2. Thin-walled beams subjected to bending with influence of shear

The forces—displacements relations for a prismatic thin-walled beam subjected to bending, by ordinary
beam theories that include the shear influence (Filin, 1975), are governed by the following differential
equations
dw d*w dw  dM d'w &M, do.

a:_ﬁa E[y@:_Mya E[y@:_ dxy:_sz E[y@:_ dxzy = - d% =4, (1)
where w = w(x) is the displacement in the z-direction due to bending, f = f(x) is the angular displacement
with respect to the y-axis due to bending, /,, is the cross-section moment of inertia with respect to the y-axis,
M, = M (x) is the bending moment with respect to the y-axis, Q. = Q.(x) is the shearing force with respect
to the z-axis, ¢. = ¢.(x) is the line load per unit length in the z-direction, Oxyz is the rectangular co-ordinate
system, where the y and z-axis coincide with the principal axes, where the z-axis is the axis of symmetry, and
E is the modulus of elasticity (Fig. 1);
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Fig. 1. Rectangular closed thin-walled cross-sections with coordinate systems: (a) three cell section; (b) two cell-section.
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dWS dWs dzws dQ

= - GAs—=0., GAj—r =—==—¢q_, )
dx ﬁs? dx z dxz dx q. ( )
where wy = wy(x) is the displacement in the z-direction due to shear, iy = f(x) is the angular displacement
with respect to the y-axis due to shear, A is the cross-section shear area;

Wt:W+W87 ﬁt:ﬂ+ﬁs7 (3)
where wy is the total displacement in the z-direction and f; is the total angular displacement with respect to
the y-axis.

The stresses are given by
My sz Qz *
Gx:fZ, sz:7, Ty :I—ySy; (4)

where ¢, = g,(x, s) is the normal stress in the x-direction, 7,5 = T.s(X,s) is the shear stress in the s-direction,
T.s = Ty s(x,s) is the shear flow in the s-direction, z = z(s) is the cross-section rectangular co-ordinate,
S}, =S} (s) is the statical moment of the “cut-off portion” of the cross-section with respect to the y-axis,
t = (s) is the wall thickness and s is the cross-section curvilinear co-ordinate, with the origins K, and K,
where T, = 0 (Fig. 1);

It is assumed that the shear influence on bending is small; it will be taken into account in the calculations
of displacements only, by using (2) and (3). The cross-section contour is assumed “‘rigid” (neglecting the
contour contraction).

Thus, from Hooke’s law,

o, = Eg,, (5
where ¢, = ¢,(x,s) is the strain in x-direction. The shear flow is defined by the normal stress o, by the equi-
librium equation in the x-direction

%t + 0T

Ox Os

The normal stress in the s-direction o3 = o4(x,s), which is ignored in Eq. (5) as a small quantity, can be
obtained by the shear flow, by using the equilibrium equation in the s-direction

0Ts.  O(ost)

ox Os
where T, = T'.

-0 (6)

=0, ()

3. Thin-walled beams subjected to bending with the cross-section distortion
3.1. Distortion of the cross-sections of thin-walled beams subjected to bending

If the frames or diaphragms are omitted, or the cross-section is not stiff by itself, the cross-sections of
thin-walled beams are no longer forced to maintain their shape. In the limit, it may be assumed that the
beam walls are hinged along their longitudinal edges. Thus, the walls will be loaded by forces per unit
length along their longitudinal edges, in their planes (Pavazza, 2002).

In the case of symmetrical closed thin-walled cross-sections with three cells (Fig. 2a), the inner vertical
walls and the central horizontal walls may be treated due to symmetry as a unique beam with the rigid
cross-section (beam component 1). Two cell cross-sections may be treated as a special case of three cell
cross-sections (Fig. 2b).
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Fig. 2. Rectangular closed thin-walled sections with hinged walls: (a) three cell section; (b) two cell-section.
3.2. Beam components

The beam may be decomposed into four beam components (Fig. 3). In the case of double symmetric
beam cross-sections, it may be assumed that the beam components 1 and 3 are subjected to bending with

influence of shear and the beam components 2 and 2’ to tension and shearing due to distortion of the cross-
section shape.

Fig. 3. Beam components of the beam with double symmetrical three cell thin-walled cross-section.
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For the beam components 1 and 3, the following differential equations may be written (i=1,3)
(Pavazza, 1991)

dw; d?w, dw, dm
‘=B, El,—'=-M,, El—=——2"=_(0,—m,
&~ P Eliga SRS de — (e (8)
d*w, d’m,, d dm,;
E[in == dxzy = _a(in - myi) =4 + dxy )

where w; = wyx) is the displacement in the z,-direction, ff; = f{x) is the angular displacement with respect to
the y-axis, /), is the cross-section moment of inertia with respect to the y;-axis, M); = M,(x) is the bending
moment with respect to the y-axis, Q.; = Q.(x) is the shearing force with respect to the z;-axis, ¢.; = ¢.{x) is
the force per unit length in z-direction, m,; = m,(x) is the moment per unit length, O,x;y;z; is the rectan-
gular co-ordinate system, where the y,, z;-axes coincide with principal axes of the corresponding cross-
sections;

dwy; dwy; d*wy  dO,
dx = _ﬁsia GASi— = GAS[ dx2 = dx = _qzi7

dx zi? (9)

where wg; = wg{x) is the displacement in the z;-direction due to shear, f;; = fs(x) is the angular displace-
ment with respect to the y,-axis due to shear, Ag; is the cross-section shear area;

Wy = Wi + Wy, ﬂu‘ = ﬂi + ﬂsn (10)

where wy; is the total displacement in the z;-direction and f3; is the total angular displacements with respect
to the y;-axis.
For the beam component 1, the moment per unit length may be expressed as

my = TAh, (11)

where T4 = T 4(x) is the force per unit length along the longitudinal edge 4 and / is the height of the cross-
section. The stresses may be expressed as follows
M, T (9., —my)

_ 7y _ _
Ox1 = Z1, Tysl = ) szl -
Iyl h Iyl

S;l + TA|A—A" (12)

In this equation 74 is assumed to be distributed along the vertical wall of the beam components 1 only,
as a constant (which is expressed symbolically by a vertical line); it represents the influence of the beam
components 2 on the beam component 1.

For the beam component 3, similarly, one has

my; = Tgh, (13)
where T = T5(x) is the force per unit length along the longitudinal edge B;
M T s —my3)S
Ga=—Lm, tm=— Tg= M + T (14)
Iy3 13 Iy3

Here is assumed that the origin of s is at B, i.e B’ (Fig. 1).
For the beam component 2, it may be written (Pavazza et al., 2001)

duz d2u2 dN2
EA»—2L =N, EA,—L="2=—
274 2, 2742 i qx2s
where

quZTA+TBa (16)
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where A, is the cross-section area of the beam component 2, u,, = u,(x) is the displacement of the cross-
section in the x,-direction as a plane section and N, = N,(x) is the normal force;

szZ _ _ dm}’z

QZZ = my, dx =—qn = dx ) (17)

where
b

m/vz:—(TA—TB)E. (18)
Then

U = uzp +f,
where u, = u,(x, z5) is the displacement in the x,-direction; f' = f{x,z) is warping due to shear

Qz2 5% ZZ b2
— =2 2 - 1
=2 T E\" 1) TE (19)

where g = g(x,z) is a function that can be obtained by assuming that f= 0 when w; = w3, when according
to (4)
2239 S*)A - St'B
Ti—Tp=kTs+Ts), k=—==—c, (20)
b S+,
where z3 is the coordinate of the shear flow zero point for the rigid cross-section, S, and S are the statical
moments of the cut-off portion of the rigid cross-section for the points 4 and B, respectively.
Thus, from (19) and (20)

CK(Ta+Te)b_ Ta=Ts(, b 1)
2G4, 2T kEd, \7T12)
1.e.
bz 2G Zy 2 Zy G
= [Ty— Ty —k(Ti+Tp)]— = (Z) +2 - 22
f=Ta= T —k(Ta+ B)]ZGAz{kE<b) % 6kE}’ (22)
and
b2 |:2G Zy 2 V4 G:|
uy =1z — [Ty — Tp— k(Ty+ Tp)]—— |— (2) +2——|. 23
2=ty = [T =T = (T, B)]2GA2 kE(b) b GkE (23)
The stresses then read
N, Eb [2G/z\2 z G]1d
= Ee =2 (2) 42— | [Ty — T — k(T4 + Ts)],
T = B = 2GA2{kE(b> b okE| x4~ Ts —KTu+ )] o)
sz 1 Z
Tyn = tzz’ szzz—z(TA—TB)—F(TA-l-TB)fv
wheresx:%.
The stresses given by (24) satisfy the equilibrium equation given by (6) only if
d
E[TA*TB*IC(TA+TB)] :COHSt, (25)

otherwise the solution can be used only approximately.
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The beam component 2’ will be under antisymmetric tension and shearing, with respect to the beam

component 2.

3.3. Compatibility conditions

The compatibility conditions, along the edges 4 and B, taking into account (23), may be expressed as

h b’ 2G
biz=w 164 (1 3kE> T4 =T = k(T + T5)];

h b 2G
—Pa==uyy ——— (1 +=—= [Ty — Tz — k(T4 + T3)].
[332 u, i 2( 3kE>[ 4 B (T4 )]

Hence
2

m[TA—TB—k(TA‘FTB)L

h
uy = —(By + ﬂ3)z+
GAxh
Ty— Ty —k(Ts+Tp)=—(p —ﬁa)b—zz
Then, referring to the first equation of (15) and the first and second equations of (8)

My Mg\ dsh (M M5\ GAsh
Ny = (22t ) 20 (2 ,
I, I3) 4 Iy 1) 6kE

and, referring to the second equation of (15), (16), and the third equation of (8)

Qzl — my Qz3 - my3 Azh Qz] - myl Qz3 B my3 GAzh
T+ Ts= e i —
At ( Iyl * [}’3 4 + Iyl 1y3 6kE ’
ie.
EAh  d GAh
TA+TB:—TZX@(W1+W3)— 6; X@(Wl—Wﬁ.
The second equation of (27), taking into account the first equation of (8), may be written as
GA>h  d
TA_TB+k(TA+TB):_T;Xa(wl_w3)~
The functions T4 and Tz may then be obtained from (30) and (31):
EA>h d’ GA>h 1\ & GA>h d
Ta= =g (R O ) === (T ) G O =) 50 G O =)
EA>h d’ GAsh 1\ & GAzh d
For the case w; = ws, one obtains
o EAzh d3W1 - EA2h d3W1

Substitution of (33) into (8), taking into account (11) and (13), yields

d*w, d*w;

EI E[},SW =4,

e dX4 =4

(26)

(34)
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where
A Al

Le=I1+(14+k)— 1 Is= y3+(1—k)T. (35)

Since
q: 1

a1 t4q;3= ER Iye + 1y = ilya (36)
from (34), taking into account (1), one obtains w; = ws; =w, i.e.

q:1 q:3 q.

=== 37
Le Ly 1, (37)

Thus, referring to (1) and (4), T, and T, given by (32), become
0. Q0.

TA:TyS;A:_szAa TB: Iy S;B:szBv (38)
where
A h A h
S, j (1+k), S i (1 —k). (39)

3.4. Internal forces and displacements

By substituting (28) into the fourth equation of (8), taking onto account (11) and (13), the following dif-
ferential equations may be written

d*w,  EAR? 2GY\ d* GA* &
! 2 (1 k)(l—M>M(W1—W3)—2; dxz(Wl_W3)*qz1»

El Pl
dwy  EAN d* GAh' &
Els—qa+—3 (1 —k)<1 +3k_E) @(Wl —ws) t =7 Y (w1 —ws) = q.3,
where I, and I, are given by (35).
By multiplying the first equation from (36) by I,/(I,c + I,) and the second by I,./(I,. + I,5), and sub-
tracting the second equation from the first, the following differential equation may be written

(40)

d4W1 3 d wWi_3

El o — kg o2 = = (41)
where
Ly — gl GA (h\’
W3 =W — W3, (g = 12 y 937 ; k/ = — (> 3
L+ 1, 2 \b (42)
i [ (4B (-B 8 A
- Ly + 1 Lol 8 |
The following differential equations can then be plotted (see Appendix A)
dW1 3 d2W173 d3W1,3 dMycs
dx ﬂl 35 EIyCSV = _M}'CS7 E[yCS dx3 = - dx = _(chs - myCS)7 (43)
d'wis &M, d dmes

El s it = - F _a(chs - myCS) =G T dx
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Taking into account the first equation of (43), it may be written
d*w, B d*ws B d*wy 4
d?2 dx? dx?
i.e. referring to the second equation of (8) and the second equation of (43)
M, My :MyCS

Iyl ]y3 ]ycs '
From the equilibrium, it follows
1 1
My + M3 — Nyh = zMyv 0,+0;= fo
Substitution of (28) into the first equation of (47) yields
My, My, 1
— I +—I =-M
Iyl e + Iy3 Vs 2 Yo
where
Ay 2G Al 2G
I, = — 1+ Io=Is+—(1-—=].
e =ty ( +3kE)’ s =ty 34E
Here
I +1I = 1I
ye ys 2 ye
From (46) and (48), taking into account (50), it may be written
M, Ly My M Lo My
Mylzl—“lyl—i—Z]V—x J Iyl, My3:I—ny3—21LX 2 Iy37
¥ yes y y yes y

and according to third equation of (8) and the third equation of (43)

I, ,—m
0, — My :% 1 “"ZILS X QZCSI ycslylv
¥y yes y
Qz ;C QZCS B myCS
O —myy = Z] 5 — 228 x Zs " Thes
V. Iy V. chs Iy V.

According to (51), taking into account the second equations of (8), (1) and (43), it may be written

wi =w+Aw;, wy; =w+ Aws,
ﬁl :ﬁ+Aﬁ17 ﬁ3:ﬁ+Aﬁ37

where
/ !
s e
AWl = 2[—W1,3, AW3 = —2[—W1,37

y y
U

Ivs [;c
AB, = 2]“_/31—3» ABy = _2]_ﬁ1—3-
¥y ¥y

909

(47)

(48)

(52)

(53)
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From (28) and (51), one has

M, Ah I.—I, M Ah L.+I, M GAyh
N, = — My 22 e s yes 220 Tye s yes ) 55
T S S R SR NNV Y5 (55)
From (53), it follows
1 I, — 1
w==(w +w) + s (56)
2 I,

Thus, taking into account the third equations of (1), (41) and (43), T, and T’z given by (32) may be writ-
ten as

1/ -
:%S:;A_QZCSX VSS* —k ﬁl%
I, 1 Lyes h (57)
Qz s chs [/C I;S * ﬁ 1—-
=8 X ——=Sp+k ,
TR Loes "
where §7, and S, are given by (39).
By substituting (57) into (52), taking into account (12) and (14), (35), (39) and (49), where
2r' Iy + (I —I"S*h 20 0 + (I, — 1)S 5h
yl +S* h— [yu V3 +S* h— Iys’ ystyl (;c ys) A ,V3 ([yc ys) VB = I,
y y
the following relation can be obtained
0. 0.
Qzl = ]_],VC + chs7 Qz3 = I_I)’S - chs' (58)
y y
Hence, taking into account the second equation of (47)
1 s T Ivc
0. = M (59)

Ly +1ys

The displacements due to shear wg and wg; may be obtained, according to the second equations of (2) and
(9), as follows
My — MJ(}A) . — Myl — M)()/II) s — My3 — My (60)
GAS ) sl GAS] ) s3 GA53 ’
where M £A>, M ;f) and M jgl) are the bending moments of the beam and the beam components 1 and 3 at the
beam left end. From (60) and (51), it follows

Y@
Ws =

— A @ '
. — M, — M I Mg — M) ZIVSI
GAq I, G4y Lel,’ (61)
_ A _
W = M, — My SEN Myes = M3 X 2 [T,
) GAg I, GAg L,

The unknown shear areas Ay, and Ay can be obtained from the condition: when wg; = wgz = wy, then
wi = w3 =w, M =0. Thus, from (61) and (60)
I, Iy

Asl— — A, A = [AS. (62)
} y
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By substituting (62) into (61), one may finally write

Ws1 = Ws + AWSl, Ws3 = Wy + AWS37 (63)
where
' My — MW I'. My — MW
Awg =20 x 2208 0 Ay = 0 B e 64
BT s T T LT o e

3.5. Stresses

The stresses for the beam component 1 may finally be obtained by substituting the first equation of (51)
and the first equation of (52) into (12):

M, 4
Oy = 1}121 +Aax17 szl :%S;l +%S;A +ATxSlv (65)
¥y y y 4
where
!
% MVCS
Agy = 2 x Tz,
bo oy (66)
21, _ r.—r. |" '
Aszl = 7 2 X —QZCS 7 Myes S;l — QIZCS X 7}‘:] L S;A + m;;cs .
yes v v yes 4 4

The stresses for the beam component 3 may be obtained by substituting the second equation of (51) and
the second equation of (52) into (14):

Mt QZ * Z Qrk
0,3 = [)323 + AGx37 sz3 = TSyg, + %S})B + ATXS37 (67)
y y y
where
2L, M,
Ao-x3 == X — 23,
chs [y (68)
. - I —1T
_ Y chs mycs * chs yc VS ok mycs
ATXS3— XiSS —45,3 .
Les I, 7L, Le T h

The stresses for the beam component 2 may be obtained by substituting (55) and (57) into (24), taking
into account the first equations of (1) and (43), and (39):

M h QZ % * QZ % * 22
0o = — I—y x5+ A0e T = —oF (Sh4 = Syp) + I (S +83)5 + AT, (69)
where
! ! ! ! ! !
Ay :ch _Iys % M yes ><ﬁilyc +Iys % My % ﬂ ch +Iys % M s < Z_Zh
n =g I, "2 I I, " 3kE " I I, b
IL.+nIy M Gh [ (z\2 1
e ys ycs
) ) on 6(—) — -, 70
L S X3kE[ b 2] (70)

! ! !

Q [c_[;s Q ]'c_[‘s Zy My
AT, =28 5 28 B (g _gr ) =28 X W(gr L gr )= 2=
xz2 2 Iy chs ( A yB) Iy [ycs ( yA + yB) b h
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The force per unit length ¢., can be obtained from (17) and (18), taking into account (57):

02 =~ 22(5, - 513 + Mg )

where
/ /

B =2 B s - 535 - 1 (1)
Here

o=~ 2, (73)
where 7,4 is the normal stress in the y,-direction for y, = —b/2 and 1, is the thickness of the beam com-
ponent 2.

The first part of the expressions for stresses represent the stresses for the case of rigid cross-sections. The
second part (Ag and AT) represent the additional stresses due to cross-section distortion, defined by the
load g..s and internal forces Q.. and M,,, and the moment m, (see Appendix A).

The same holds for the displacements given by (53) and (54), and (63) and (64), where the additional
displacements due to distortion are defined by the displacements w;_3 and f;_3, and the moment M,
(see Appendix A).

3.6. Boundary conditions

The boundary conditions at the ends of a beam may be formulated as follows

wi=wy, ws=wy, B =p, B3=4p (74)
Then, according to the first equation of (41),
Wwi-3 :WT_W; ﬁl*B :ﬂT_ﬁ; (75)
and according to (56)
1 4 _ 4 1 [/ _ 4
w =5 (W +wi) + = (wy = wi), B=5 (B + B) + (8 — B3, (76)
2 I, 2 I,

and according to (27)

2

——— [Ty — T — k(T4 + Tp)],

. o GAsh
Ty = Ts—k(Tu+To) = =(F = ) =5~
Thus, the boundary conditions are defined by the components wi, w} and f], ;.
In terms of forces, the boundary conditions may be formulated as follows

o= (8 + B 5+

0.,=0,, 05=05 M,= M;l’ M3 = M;y (78)
Then, according to (59) and (46)
ol s . 1)0 M* M:i
QZCg — Qzl Y Qz3 ) ; Mycs — _}1 _ 3 chs7 (79)
) ch + [ys Iyl 1)73
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and from (58) and (48),
I I
_ * * _ e * s *
Qz _Z(Qzl +Qz3)7 M}’ _Z(EMJ/I +[y_.3My3)'
Here the boundary conditions are defined by the components O’;, O’; and M,
The “simply supported” ends may be defined by

M.
Wy =w =wg=w3=0, M, =My;=0.
Then, according to the first equation of (75) and the second equation of (79)
wiz =0, M,;=0,
and according to the first equation of (76) and the second equation of (80)
w=w=0, M,=0.
Referring to (65), (67), (69) and (4), it follows
Oy = 03 = 0y = 0, = 0.
For the “built-in end”, it may be written
wi=wy=wy=w3 =0, B, =p=0,
for the left end (A);
Mj(}flf) _ M;/II) o B M® _ Mﬁ)‘;) _
GAq ’ GAg

for the right end (B).
Then, according to (75),

Wi-3 = 07 BI—S = Oa
and according to (76),

Wy = wp +

w=0, p=0,
for the left end (A);
we=w+ M =0.
GAs

for the right end (B). The “free end” may be defined as
0.,=0, 05=0, M, =0, M;3=0.
Then, according to (79),
O0.=0, My=0,
and according to (80),
0.=0, M,=0.
Referring to (65), (67), (69) and (4), it follows

le:0x3:O-x2:O-x:0> szl:sz3:Tx22:sz:0'

913

(84)

(85)

(86)
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4. Illustrative examples

In order to illustrate the application of the expressions for the stresses and displacements, a thin-walled
beam with the double symmetric three-cell closed cross-section with the constant thickness is considered

(see Appendix A).

4.1. Geometrical properties and the material

32 o1 .5 2

h=2b, A=164,, I,= ?Azbz, Sy = gAzb, Sty = 6A2b7 k= -3
8 2 2 2 ! 2 ! 2
Iyl = §A2b s Iy3 = gAzb s [yc ~ 3282A2b s [ys ~ 2052A2b s

;
Lo =340, I = §A2b2, Les ~ 0.9234,0%,

s

E !
ky=2Gds, Z=26, v=0456,

! !/

I 2r 2r + I
PR ILSST, SRR, TR s A6, SR 5779,

yes yes ves yes

! ! ! !

[ [
LI L 2 ~0.61 2~ 0.385.
333, 7 0.615, 7 0.385

yes y y

Here / is the length of the beam. The shear areas are calculated as pure geometrical properties, for Pois-
son'‘s ratio equal to zero (Bhat and de Oliveira, 1985; Cowper, 1966)

A, =AK, K=0424, A, =AK = 6.7844;.

4.2. Simply supported beam under uniformly distributed load

The internal forces at x =0 (Example 1, Appendix A)

Goos! Q1 G Gocs
== —— X — = ==
QZCS 2 2 qz Qz qz )
G.es! Gocs
QZCS - m}’cs = 2 X" = Qz X33
q.

qu
Myes = Qz qc (1 - XS)

z

The internal forces and displacements at x = //2 (Example 1, Appendix A):

2 2
Goes! 91" G Gocs
My = g Xo = 3 X ZXO =M, ) Xo»
wis = sl sy S e s ) 2 11 s T 20
T 3R4EL TUU384EL, T g 0 : q. ° ' g n

48EI, b\ *
- — 14— 1439245(~ ) .
Wt Now Mo SGASIZ (l)
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Additional stresses due to distortion at x = 0:

A

— A
AT, — 4.446 Lo — M S, — 1.333 chs L, + Myes
1, 1, 26 |4
A A
_ 4.446%5;1 Tees (1) — 1.333 TS REES 5.333%A2qu“ 1=z,
y qz z y qz A
O.cs — Myes 0. My
AT = —7.112%2 " Thes gu g 333 % g s
3 I, I, % 2b
- 77.11295;3 Tecs . 1.333%% G _ 53339 4 p % () _ )
Iy qz I}’ z Iy z

Qc~ * ch 22 mvcs
AT, = 0.667 =25 (S, — §7,) — 1.333 = - )
w2 = 0667 2(S], = 835) = 133352 (8, + Sio) 5 = 5

—0667Q (S, — 8y =, 333Q (St + 87p) 2 x Lo ~533% Lt (1 ),
y qz b qz Iy z

Additional stresses and displacements due to distortion at x = //2:

Aoy = 4.446 [”“ =4 446 Loy

L0
y y z

M M, ,
Aoy = —7.1121—}23 = _7.1121_)23@)(

0>
y y q:

, \ 3/2\° 1
Aoy, = 1. Myes 2.22 Myes ’“ 2.22 ycs 22y _C
0p = 1.333— [y b— 3 I, b+5.7719— 7, 2z, + + 3 I, [2 ( 5 ) 2]

-22232 M, b"m

z qz y } qz

2\ b
Awy = 0385w, = 4.446w L o — 4446w, Lz 5 D0
qZ qz 1/]0

Aws = —0.615w; 5 = 7112w 0 = 7,112, L5 5 20
qZ qz ’70

(4)

cs M,cg
Awg = 4. 446# 4.446w qzcs o = 4.446w, 1= UEN 75)’

z z 0

(4)

yes MACS
AWS3 = —7112# — _7112Ws qZCS XO — —7112W[ qzcs X XO

)

qz qz 170
48E1, 2
_owg ;L SGAS;Z B 39.24(?)
We=—> M= 48E]

1 Lot 1 39.24(0)

Qch 70 + 2 223 y qucs |:§ (%
q

915



916 R. Pavazza, B. Blagojevi¢ | International Journal of Solids and Structures 42 (2005) 901-925
4.3. Built-in beam under uniformly distributed load

Components of the internal forces at x = 0 (Example 2, Appendix A):

2 2
G5! 9.7 G Qe
Mycs:_ 12 X2 = — 12 X XZZMyq_XZa
Gl qzl Goos 1 Gees
chs - 2 - 2 qz - Q Z .

Components of the internal forces and displacements at x = //2 (Example 2, Appendix A):

? ?
qzcs _ qz X @X — M qzcs

Mycs - — 9
o ST T g Xy, g M
4 4
Ges! I G e
L=t 11557 = 11.557w =
W13 T 3847 ? 3848, " q. 7 T

£ 2

qzcs ? 48 ] <b>

= 11.557w, X —, W=mw, =1+——=1+4+196.2
q: m ‘ ’11 ]71 G‘4Sl2 l

Additional stresses due to distortion at x = 0:

Ac, = 4.446 I”S =4 446 n ey,

y y z

AI /
AT, = 4.446%5;1 - 1.333%3;4 — 44467 o =) T 13333 g | d==
y

y qz y 4 qz
M M, gq
Aoy = 71127 = —7.112—L 7 L=, ,
Ox3 Iy Z3 Iy 23 7 X2
Z AN
S5Ap Ab

Ab

oo
o

ANEHA
N

(a) (b)

Fig. 4. Geometrical properties of the rigid cross-section: (a) z-coordinate; (b) S} -coordinate (statical moment of the cut-off portion of
cross-section area).

\1\




R. Pavazza, B. Blagojevi¢ | International Journal of Solids and Structures 42 (2005) 901-925 917

AT, = 7112Qms* —1333ch5 =iyt 333, G
I, 7 I, 7 ¢
y Y z y z

3 ()1
2\ b 2

302 1
= 13332 My pbees o 22372 My s, 4o, 77972 My sy 42 2232 M, p Gees [ (Zz> - } 12
y z y z y qz ) qz 2 b 2

st }cs ycs )cs
Ao, = 1.333—— 7 b—2.223 7 b+5779—— 7 2z +2.223 — 7 b

y y y y

Ox1.23
Ao x1,23 My
—Yz
I% z |
’ 0.0091 0.985 (0.987) (1.0203) (0.998)
0.0146 % T 7 10001
L o
©
L @ | AN | 1.0001
0.985 (0991) (4 0109) (1.0012)
(a) (b)
A-I—Xsl 2,3 szl,2,3
QS QS
I)’ Iy
0.066 (1.087)
1.596 __ : 0.596 (0:354)
J‘L 6.228 0.946 % 7 o
(2.177)
| (0.116)
0.855 0.145 — N\ 1637
0.637 J\ | (1.691)
(2.029)
ﬁ[ 1.946
! RN |
0596 (0.364
0359 =—1.066 *
(1.087)
(c) (d)

Fig. 5. Stresses for the simply supported beam: (a) additional normal stresses due to distortion at x = //2; (b) normal stresses due to
bending with distortion at x = //2 (FEM in brackets); (c) additional shear stresses due to distortion at x = 0; (d) shear stresses due to

bending with distortion at x = 0.
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chs * * chs * « 22

AT, = 1. — — 1. —

= 1INTES, - 85,) ~ 13BT2 S, 45,5
0.

0. %

= 0667 (S* LT 33F

z

* w \ 22
(535,07 %

Additional stresses and displacements due to distortion at x = //2:

Aoy — 44460, 2y dzes
I)’ y z
Aoy = —7112Me 741 My G
73 IY [y N z Xl,
Awy = 0.385w,_5 = 4.446w L= o — 4 446w, L= 5 P
qz qz ’71
Aws = —0.615w; 5 = —7.112wEs o = 7. 112w L5 5 21
qz qz 171
My — M(ﬁg q q
AWS] = 4 446Tsy = 4446W5 qZ:S (Xl + Xz) = 4446W1 qz:S (Xl + Xz)nll,
Mycs - M(és) q q
Awg = T2 2% = 7112w B2 (4 ) = =7012m 2 (4 + ),
N q: =z

W, Gt 196.2()°
Wy = ) ’7 = ‘: .

ml I+ S 14 196.2()°

The additional stresses and displacements due to distortion are calculated for I/b =32, i.e. v = 14.59
(po=0.0112, 1 =0.0564, o =0.0094, y; =0.0282, y» =0.1915, y3 =0.0685, g =0.0131); 5y = 1.0383,
1y = 0.0369, n; =1.192, 1}, = 0.161.

0.017 AW, 5 Was
\\\ Wt Wt
N 0011 0983 (0.946)  (1.032) 1011

© \\__@__l 1

P —
 ———
-

N T]

e — — —— ———

0.983 (0. 947)

(1.032) 1011
(a) (b)

Fig. 6. Displacements for the simply supported beam at x = //2: (a) additional displacements due to distortion; (b) displacements due to
bending with distortion (FEM in brackets).
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The stresses and displacements are calculated for the beam subjected to uniformly distributed load
g-1 = q-/2, -3 =0 (q-e/q- = 7/32), both for simply supported and built-in beam ends, for x =1/2 and
x = 0. The results are given in respect to the stresses and displacements for rigid cross-sections (Figs. 4-8).

In order to check accuracy of the obtained results, the normal stresses and displacements at x = I/2 for
the simply supported beam are also calculated by the finite element method; the shear stresses are calculated
for x =0. The 3D membrane model of one-quarter of the beam is investigated. A high mesh density with
3200 quadrilateral elements and 12880 nodes is used. The displacements of the nodes are restricted at x =0

AOy,3 Ox123
M, M,
ly ly
0.0274 O_QSWOGZ) (0.996)
0.0439 ® | 17 | 1027
1S ?
\
\
|
|
\
|
\
\
© |
® A—\ ' l1.027
I |
0.956 (0.969) o 059%)
(a) (b)
T
AT s Qms;?‘
QS :
|y y
| 0.032 0757 1.932
0243 __ 0:292 o.70sﬂ=
L 1+ \0.757
H 1.757
0766 [\ |\ 0234 — N\
0.845 1.845
N

(c) (d)

Fig. 7. Stresses for the built-in beam: (a) additional normal stresses due to distortion at x = //2; (b) normal stresses due to bending with
distortion at x = I/2; (c) additional shear stresses due to distortion at x = 0; (d) shear stresses due to bending with distortion at x =0
(FEM in brackets).
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ACy 03 G123
M
M,, Mz
Ji 1
Y 0.186 1.186
1
i 0.702 !
0.298 \@ ! 77 i
© @® \
|
1
o ® /
N i
@ } \ i
(a) (b)
0.129 AW, 5 Wiz
w
\\\ w, '
N 00735 0.871(0.789)  (1.151) 1.069
N, T T
N
o Ne_e__ [l |
\\
© \\\ |
N8 L |
0.871 T
(0.789) (L151) 1.069
(c) (d)

Fig. 8. Stresses and displacements for the built-in beam: (a) additional normal stresses at x = 0; (b) stresses due to bending with
distortion at x = 0; (c) additional displacements due to distortion at x = //2; (d) displacements due to bending with distortion at x = //2
(FEM in brackets).

in the cross-section contour direction and at x = I/2 in the beam longitudinal direction; at y =0 (in the
plane of symmetry) the displacements are restricted in the beam transverse direction.

5. Conclusion

An analytical method has been applied to estimate the additional stresses and displacements due to dis-
tortion of the cross-sections of thin-walled beams subjected to bending. Simple rectangular cross-sections
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with three and two closed cells with double axes of symmetry are considered. It is assumed that beams are
long enough that warping due to shearing may be ignored in the stress calculation (in the case of rigid cross-
sections, i.e. when the cross-sections maintain their shape). The cross-section distortion is considered in the
limit, by assuming that beam walls are hinged along their longitudinal edges.

The additional stresses and displacements due to the cross-section distortion are given in the analytical
closed form and compared to the stresses and displacements of the ordinary bending theory (where the
cross-sections maintain their shape).

It is shown that the additional stresses and displacements due to the cross-section distortion can be sig-
nificant (compared to the stresses and displacements of the ordinary bending theory), particularly, the addi-
tional shear stresses.

A typical cross-section with three cells is analysed, where the ratio of the beam length and the cross-sec-
tion breadth was equal 8 (the beam length to the cross-section height ratio equal 16) is analysed. The loads
were distributed along the inner vertical walls only. The ends of the beam were simply supported and built-
in, respectively.

The comparison for the simply supported beam under uniformly distributed load along the inner vertical
walls to the finite element solution of the problem has shown acceptable agreements of obtained results.

Although the hinges between plates do not occur in actuality, it is important to analyse such conditions,
together with the ordinary beam theory (where the cross-section is assumed rigid), as limits of the actual
behaviour of the structure. In fact, there are no enough stiff cross-sections in actual thin-walled beam struc-
tures to guarantee the cross-section shape, especially under nonuniform load distributions in the transverse
direction.

The real stiffness of the cross-section structure can be easily included in the consideration. The torsional
stiffness of the plates together with bending stiffness of transverse framing (if the structure is framed) and
the shear stiffness of transverse bulkheads (if there are any) should be taken into account.

The same approach may be used in the case of thin-walled curved beams. The cross-sections of the com-
ponents beams may be approximate by rectangular cross-sections; or be considered as curvilinear cross-sec-
tions. In the compatibility conditions and equilibrium equations, the cross-section properties of the beam
components will be changed only. It should be noted that relative vertical displacements are small, in com-
parison with vertical displacement of the beams. In that case, in the finite element analysis the shell elements
must be used.
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Appendix A

The solution of Eq. (41) may be presented, by the method of initial parameters, as follows (Pavazza,
1991)

v=Kv,+ 1, (A.1)

where

V=100 My By wiss]', vo=[0(0) Mu(0) B 5(0) wi5(0)],
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1 0 0 0
ishgx chéx Ies§shix 0

K= ,
EI} (ch¥x —1) Elisg shéx chéx 0

E]}’ig ( shgx—x> E] = > (chéx —1) —ésh%x 1

] = El @ W(l w4 ET g dw(i-3) EI dzw(lfB)p dwi-3), ! (A 2)
| T Edyes + yes _2 dx —Llyes =32 — —ax Wa-3p | o '
where
1 P[]l g kp
X — —shZ2(x— &) — (x— d =1 . A3
W(l 3)p Elms gz 0 |:gs l (X é) (X 5):| qzcs 57 g Echs ( )
For the uniformly distributed load, ¢..s = ¢.s:
2 2 2
Ges! {1 g x
Wia-3p = (Ch ) — —:| s
Elwsg 2 (A4)
2 2 2 2 T
1= {—qu —qm;—z (ch&x—1) _153;37;:572 (ésh%x —x) #jgz L% (ch&x—1) — "7} } .
In the case of many load distribution fields, it may be written
v=Kv+1+) Ky, ,+1L), (=23,...,m), (A.5)
r=2
where
Va,_1r = [QZCSyar—l-,V M)rs,a,.,lir ﬂ(173)a,‘717r W(1-3)a,_,,r ]T7
1 0 0 0
ésh%ic chéx El,%shéx 0
K= 1 55 (chsz - 1) ploshts chéx ik (A.6)
—gte (I8 —5) —glp(chi—1) —Lshix 1
T
I = [ R e =T } , X=x—a,

For the partly distributed uniform load, along 0 < x < a; (r=2):

— qCSlZ L g 2 _ qz’slz 12 g (x_al)z
Wiospra =~ g /0 {gsh (- )— (x g)]df— A e e 1] B

P len 4l [ g
L= [qmoc — 04z [ () — 1 o a) -~ (x-an)]
T
Cal [PrLe (x —a)’
El g {g2 [Ch l (v =a) 1} 2 ' (A7)
For the concentrated force, 0., at x = a,_;:

Vo, =[—0. 0 0 0]". (A.8)

zCs
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Example 1. Simply supported beam under the uniformly distributed load; boundary conditions by (81):

qcs X
chs mycs - lﬁ h 2 l>7

qes! [1 3 2>_c __lﬁ
g [

Myes =

)]

Mo = qu [1 — ychg <_ _ f)} (A.9)

/

1
2
q.. x 2y I x
SR PL P S A Y
Pros 2EI),CSg2{ I gSg<2 )]

a0t [x m2 2 I x
= cs A g —Z 1= h -
W= 2E1,,csg2{1 (1) 2|17 )| g

/ A
0.(0) = =0.() =L, m<0> = i (0) = =0 (1) + myes(1) = 5% 73(0),

. (A.10)
24E[m l//o( )

M1/ =55 1000, wa(12) =

BI—}(O) = *3173(1) -

5q.1*
384E1 ., (©),

2 1 24 1 3 thv
=—(1-— ——1 ==(1-—
XO(U) 02 ( c U)’ (/)O(U) <2 +Ch v )a WO(U) Uz ( v )7
(A.11)
(U) thv v — g - / k/g
& v U2 2\ ELy
Example 2. Built-in beam under the uniformly distributed load; boundary conditions by (85):

4l X

Qs =75 (1 2 1)’
_ gl 1 x
chs mJCS ( h g (2 l) )
q.l x 2y 1 x

_ &) 2_ _r h o

s =75 [ T g(z 1))
A.12)
Gl [ W, (1 x (
M, = ——chgl=z-=
yes g2 |: y ch g (2 / )
q..° x 2y I x

=< l-2-——shg(=—=

bis=—35 & [ g8\

1

.0t (x 2 2 1 x
I =LA S i I § RS N
Wi 2Eycsg2{l (z) | e
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2. .8
X== Sh*a

gW

q(’Sl q[’\‘lz
chs(o) = _chs(1> = 7’ M}’CS(O) = M)’CS(I) = - 12 Xz(U)a (A13)
_ qcslz _ qcsl4
MyCS(l/z) - 24 Xl (U), Wl_??(l/z) - 384E1ycs (pl (U)7
6 v 3 /0 24 rv v

)(1(“)15(1*@), Xz(U):E(mfl)y §01(U):§(§*th§>- (A.14)

Example 3. Simple supported beam under the concentrated force QO = F at x = //2; boundary conditions
by (81):

0.(0) = ~0u(l) =5, 0ul0) = mus(0) = ~0(D) + musll) =5 x

1 2
mel0) = ) =5 (1= 7) - As(0) = =us) = =gl (A13)
Mol1)2) =50 wa(1/2) = g boo).

Example 4. Built-in beam under the concentrated force at x = //2; boundary conditions given by (85):

F Fi
chs(o) = _chs(l) = §> MyCS(O) :MyCS(l) = _MyCS(l/z) = _§X4(U)a
1 F 7 (A.16)
1/2) = -0 (1/2) ==, 3(1/2) = ——— ,
chs( / ) chs( / ) 2 wi 3( / ) 192Elycs (pl(v)
2(chv—1
nlr) =281 (A17)
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